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Roughness and transition 
 

• All realistic hypersonic flight 
vehicles have roughness, which can 
cause transition to turbulence. 

 

• Turbulent boundary layers exhibit 
higher skin friction and mixing, 
causing increased vehicle drag and 
heating. 
 

Image credits: NASA, Horvath 
et al. AIAA 2010-241. 



The transition roadmap 
 

Image credit: Y. Kohama; Transition map adapted from Morkovin et al. (1994). 

• Disturbances enter the boundary layer through receptivity, then grow by 
one or more mechanisms before causing breakdown and turbulence.  

• These disturbances include freestream turbulence or acoustic noise, 
surface roughness, curvature discontinuities, surface vibration, etc. 
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Transient growth: physically 
 

1. Tumin, A., and Reshotko, E., Phys. Fluids, 13:7, 2001. 
2. Whitehead, A. H., NASA TN D-5454, 1969.  

 

• Transient growth of high and low 
speed streaks can form as a result of 
the lift-up mechanism. 
 

• Transient growth is particularly 
effective for streamwise vortices,1 such 
as those produced downstream of 
roughness.2 
 

Spanwise view of a 
boundary layer 

with contours of 
constant velocity. 

Superpose a streamwise 
vortex pair onto the 

uniform boundary layer 
flow. 

The vortex pair lifts up low-
momentum fluid on the 

outside and pulls down high-
momentum fluid in between. 
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Streak growth is fed by the lift-
up mechanism, and the streak 
decays as the vortex weakens. 

Oil flow visualization of spherical roughness 
element in Mach 5.5 flow from Whitehead.2 
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Low-speed experiments 
 

1. Ergin and White, AIAA Journal, 44:11, 2006. 
 

• Subsonic experiments by Ergin and White1  (and colleagues) have measured 
transient growth in the wake of an array of isolated roughness elements. 
 

• In doing so, they showed experimentally-realized transient growth is 
suboptimal, meaning receptivity does not produce a set of initial 
disturbances that will achieve maximum growth downstream. 
 
 
 

Experimental set-up of Ergin and White.1 Steady velocity and vorticity contours from 
Ergin and White.1 

Streamwise evolution of disturbance 
energy Erms from Ergin and White.1 



Transient Growth Cone (TGCone) 
 

• Objective:  Measure roughness-induced 
transient growth in a hypersonic 
boundary layer. 
 

• Model:   Stainless steel, straight, 5-
degree half-angle cone with 5 
interchangeable nosetips 
 

Frustum base diameter:  80 mm 
Frustum length:  331 mm 
Sharp model length: 456 mm 

Nose bluntness:  1.59-mm radius nosetip 

Roughness type:  1-mm tall DRE array 

Roughness location:  X/L = 0.25 

Roughness wavelength:  3.56 mm  

Roughness spacing:  20 degrees  

Overall length:  390 mm 



What is quiet flow? 
 

• Conventional hypersonic tunnels have freestream Pitot fluctuations of 2-3%. 
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Key challenges 
 

• M6QT’s 40-second run time 
requires constructing contours out 
of 15+ individual runs. 
 

• Conditions to match include:  

• Tunnel stagnation pressure (± 2-3%) 

• Tunnel stagnation temperature (± 3%) 

• Adiabatic wall temperature ratio (± 1%) 
 

• Each condition’s contour plot 
required an average of over 130 
compressor hours to obtain. 
 



Current experiments 
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Positive angles  
 

 Negative Angles 
 

• Diagnostic: Kulite pitot probe 

• ID: 3 mm (wide), 1.4 mm (tall) 

• Azimuthal sampling: 0.33-0.37 x Pitot width 
 



Current experiments 
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Positive angles  
 

 Negative Angles 
 

• Diagnostic: Kulite pitot probe 

• ID: 3 mm (wide), 1.4 mm (tall) 

• Pitot width: 0.27-0.30 x streak width 
 



Re = 9.9 x 106 /m 

Contours: mean pressure 
Colormap: unsteady RMS 

X/L = 0.86 

X/L = 0.90 

X/L = 0.94 



Disturbance pressures 
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Disturbance pressures 
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Summary 
 

• Tripping to turbulence with roughness elements in quiet flow 
is difficult. 
 

• The steady azimuthal disturbance pressures grow in the 
streamwise direction. 
 

• The unsteady azimuthal disturbance pressures decay 
downstream. 
 

• Thus far, these hypersonic observations are consistent with 
low-speed transient growth results. 
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