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* Real hypersonic surfaces are
rough.

* Isolated roughness includes:
* Fasteners
* Joints
* Tripping elements
 Gapfiller

e Distributed roughness
 Machining marks
e Ablative heat shields
 Thermal protection tiles

Images credits: NASA and Shannon D. Moore (OutdoorPhoto.com)
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e Surface roughness introduces
disturbances into the boundary layer,

. Forcing External Disturbances
which may be enhanced through 2

transient growth. l Receptivity
¥
 Transient growth, being nonmodal in Al _IransientGrowth — [E
nature, can exist in regions subcritical Primary Modes lB C D' Bypass
to other transition mechanismes. .
Secondary Mechanisms

v

 The “blunt-body paradox,” in which
transition occurs earlier than
predicted even on highly polished Turbulence l
surfaces, may be explicable through
roughness-induced transient growth.

l Breakdown

Transition map adapted from Morkovin et al (1994)
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Computations of surface roughness
are expensive, except in cases of 000
isolated roughness. :

500

e Existing literature on experimental
roughness-induced transition is vast,
but: 100-
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* Often utilizes noisy, conventional (/0)
wind tunnels Nosetip transition data from ballistics-range

experiments; three-dimensional distributed
roughness, compressible flows (Reda 2002).

* Physics-based transition correlation is
desirable.
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* Low-speed experiments indicate roughness o n
induces suboptimal disturbance growth 000 ]
(White 2002, White et al 2005). T

Optimal spanwise wavenumber for zero
pressure gradient; Re, = 9 x 10* (Reshotko and
Tumin 2004).
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Mach 6 Quiet Tunnel (M6QT)

Quiet Test Core

Quiet test core defined upstream by Mach °
5.91 uniform flow and downstream by
acoustic disturbances generated by nozzle-
wall turbulent boundary-layer eddies and
radiated along Mach waves

Straight-wall section and slow
expansion contour minimizes
growth of the Gortler instability
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Low-disturbance test
environment up to a
Re=10x10°m1

40 second nominal run-
time

Hotwire anemometry
used as primary
diagnostic (presently
uncalibrated)

Settling chamber boundary layer Toggling bleed valves allows Vacuum-pressure blow-down
removed via vacuum ejectors, initiating quiet (0.05% Pt'/Pt) or configuration using a two-stage
new laminar boundary layer on nozzle noisy operating conditions air ejector system

Enclosed free-jet test section
with two-axis traverse
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Smooth, 5-degree cone with
interchangeable nosetips

1.59 mm radius, smooth

1.59 mm radius, discrete
roughness elements

EXPERIMENTS RESULTS
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6.35 mm radius, smooth

6.35 mm radius, discrete
roughness elements

6.35 mm radius, quasi-random
distributed roughness
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Quasi-random distributed roughness

* Roughness generated via Fourier series

h(x,80)= ii A, cos((2anx/ A, cos y, )+ mKO + 4, )

n=l m=1

K =12, for 30° periodicity
N=M=5
A, =10.16 mm
Max(A, ) = 0.635 mm

x = axial coordinate

6 = azimuthal angle

V. = half-angle = 5°
®,m€U(0,2n)

* Roughness repeats over two 150° arcs
separated by two 30° sections of
nominally smooth surface

6.35 mm radius nosetips, quasi-randomly distributed ‘ An,m COEffICIEﬂtS SElECtEd from d half_
roughness (left) and nominally smooth (right) normal distribution and scaled

* Quasi-random distributed roughness nosetip constructed via direct metal

laser sintering

Technique for quasi-random roughness adapted from Downs et al (2008).



MOTIVATION
&

Initial experiments

6.35 mm radius nosetips, quasi-randomly distributed
roughness (left) and nominally smooth (right)
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* Tested 6.35 mm radius smooth and
distributed rough nosetips
Table 1: Experimental conditions
Parameter Condition 1 Condition 2 Condition 3
Nominal M 5.9 5.9 5.9
P, 551 kPa 689 kPa 896 kPa
Ty 430 K 430 K 430 K
Re 6.1 x10® m1 7.7 x10® m1 10 x10® m1
Re, 3.9 x10* 4,9 x104 6.3 x10*
Re E _ U e k Transition predicted by Reshotko
0 0 _ v (2007) above ~250-300 (flat plate).

e

e Fork=0.11 mm:

U,k
| %4

= 780101340

e

 Wall-temperature during run is 5-8% higher than adiabatic due to subsonic

preheating.
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Mean boundary layer profiles
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RMS fluctuation profiles
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Conclusions

* Growth of fluctuation amplitudes is
observed but distributed roughness only
marginally increases growth compared to
a smooth wall.

The distributed roughness nosetip is
insufficient to trip the boundary layer,
possibly due to the bluntness of the nose.

Future experiments will include:

e azimuthal measurements for
detection of streaky structures to
confirm transient growth

e sharper nosetips and discrete
roughness elements spaced
according to optimal disturbance
theory
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